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Abstract

In this paper we study some cooperative models in Markovian queues. We stress the case of several agents agreeing to
maintain a common server for their populations in which a priority scheme with preemption has been established. In this
situation we propose and characterize an allocation rule for the holding costs that provides core allocations.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The study of cooperation and competition in operational research models is a fruitful and challenging topic
nowadays. Most fields within operations research are being approached from a game theoretical perspective,
for the cases in which several decision makers interact in situations that can be modeled as optimization prob-
lems. Borm et al. (2001) provides a review of this topic.

One of the major branches within operations research is queueing theory. Competition in queueing models
has been treated in many papers, a survey of which is Hassin and Haviv (2003) (for a survey in the control of
queues, the reader is referred to Tadj and Choudhury (2005)). There are also a number of papers on cooper-
ative issues in sequencing and scheduling (see, for instance, a review in Curiel et al. (2002) or other recent ref-
erences such as Moulin and Stong (2002) and Maniquet (2003)). However, surprisingly enough, queueing
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models have rarely been approached from the point of view of cooperative game theory. González and Her-
rero (2004) is one of the scarce papers in which cooperation is analyzed in queueing models. It considers a
Markovian situation in which several agents maintaining their own servers agree to cooperate and hold a com-
mon server for their populations. Each agent has specified a maximum value for the expected time in the sys-
tem of the members of his population. The problem of how to allocate among the agents the cost of a common
server, that fulfills the specification of each one, is dealt with, and applied to a cost sharing problem in the
Spanish health system.

The study of cooperation in queueing models is a relevant issue which deserves the attention of game the-
orists and operations researchers. In many real world situations several providers of a particular service agree
to maintain common servers which are available for all their populations: think of a group of banks which
share a network of cash machines, a cluster of universities which hold one high-performance computer, or
a set of hospitals keeping a joint blood bank. In all these situations questions like how to allocate the cost
of the common servers or when a group of service providers should cooperate are really relevant and should
be approached from a scientific point of view. We devote this paper to deal with these questions in some Mar-
kovian models.

The organization of this paper is as follows. In Section 2 we set up our notation and analyze two variations
of the model in González and Herrero (2004). In the first one, each agent has a specification for the maximum
time in the system and for the probability that one of his customers spends more than this maximum. In the
second variation, agents are interested in the time in the queue instead of in the time in the system. In Section 3
we consider a new variation which allows for preemptive priority schemes to decrease the total cost. In this
context a rule for allocating the holding costs of the common server is introduced and axiomatically charac-
terized. This rule can be easily computed and, moreover, provides core allocations.
2. Basic Markovian models

Consider a basic queueing system where customers arrive requiring a service, have to queue while the
unique server is occupied, are selected from the queue by a certain discipline (i.e., a specification of the order
in which they are selected), and leave the system after having been served. An M/M/1 model describes a sys-
tem of this kind, when the arrivals occur according to a Poisson process with parameter k (i.e., inter-arrival
times are independent and identically distributed following an exponential distribution with mean 1

k), the ser-
vice time follows an exponential distribution with mean 1

l, and the queue discipline is FCFS (first to come, first
to be served). The steady state condition for this system is k < l. From now on we deal only with M/M/1 sys-
tems in steady state. We assume that the reader is familiar with elementary issues of Markovian queues, more
precisely, with the model M/M/1. Anyway, we briefly recall whenever needed some features in connection with
that model (which is treated in deep, for instance, in Gross and Harris (1998)).

Consider a situation in which n agents run nM/M/1 systems which provide a similar service. Each agent
i 2 N = {1, . . . ,n} runs his own queue and provides the service to his own population, ki > 0, li > ki denoting
the parameters characterizing agent i’s M/M/1 system. Besides, each agent i wants that the average time that
his customers spend in the system does not exceed a certain maximum value ti 2 (0, +1). Moreover, the cost
of maintaining a server is supposed to be a linear function of its efficiency, measured by the inverse of its
expected service time (which, according to the properties of the exponential distribution, turns out to be
the expected number of potential service completions per time unit), i.e., c(i) = kli, for all i 2 N. Generally
game theory deals with solutions which are invariant to scale changes, so we assume without loss of generality
that k = 1. Now, since agents want to minimize the cost and since the expected time of a customer i in such an
M/M/1 system is known to be (li � ki)

�1, then
ti ¼
1

li � ki
and thus
cðiÞ ¼ li ¼
1

ti
þ ki:
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González and Herrero (2004) considered the following question. How is the new situation if some agents agree
to maintain one common server to attend their customers? They assume that this unique server should assure
that the average time of a customer in the system is the lowest of the maximum admissible values for all the
agents that make the arrangement (notice that this includes a feasibility assumption which guarantees that it is
possible to ensure the desired service rate at the common server). If we take S the coalition of these agents and
denote tS :¼ min{ti : i 2 S} and kS :¼

P
i2Ski, the cost of the unique server is
cðSÞ ¼ 1

tS
þ kS : ð1Þ
Notice that
P

i2ScðiÞP cðSÞ when jSj > 1, so sharing the server in this way leads to a cost reduction. Eq. (1)
defines a cost TU-game (N,c). Remember that a cost TU-game is a pair (N,c), where N is a finite set of agents
and c is the characteristic function, which assigns for every S � N a real number c(S) that indicates the cost of
a particular project for the agents in coalition S. It is common to identify the game (N,c) with its characteristic
function.

González and Herrero (2004) observe that c defined by (1) is the sum of an additive game plus an airport
game. So, c is a concave game and its core is known to be the convex hull of the marginal contribution vectors.
Moreover, its Shapley value U(c) can be easily computed and provides core allocations. For details on concave
games and on airport games the reader can consult Owen (1995).

In the following we extend the model in (1) to deal not only with expected times. We consider the case where
every agent i needs to guarantee for each of his customers that his time in the system will be smaller than or
equal to a critical value xi with a sufficiently high-probability 1 � ai. In this case the cost of the unique server
for coalition S is given in the following proposition.

Proposition 1. In the conditions above, the cost of a common server which fulfills the conditions of the agents in S
is given by:
ĉðSÞ ¼ kS þmax
i2S

� ln ai

xi

� �
: ð2Þ
Proof. Let us denote by Wi the random variable ‘‘time in the system spent by a customer of type i’’. There-
fore, for all i 2 N, the condition
P ðWi 6 xiÞP 1� ai;
must hold. It is a well-known result that the time that a customer spends in an M/M/1 system with parameters
k and l follows an exponential distribution with mean 1

l�k. So, i will maintain a server with service rate li such
that
P ðWi 6 xiÞ ¼ 1� e�ðli�kiÞxi ¼ 1� ai;
which implies that
ln ai ¼ �ðli � kiÞxi
and thus
li ¼ ki �
ln ai

xi
:

Now if a coalition S forms to maintain a common server which fulfills the specifications of all the agents, it
should be satisfied that, for all i 2 S,
P ðWS 6 xiÞP 1� ai;
where WS is the random variable ‘‘time in the system spent by a customer of any agent in S’’. Then, the service
rate l of the server must satisfy for every i 2 S:
1� e� l�
P

i2S
ki

� �
xi P 1� ai;
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which implies that
l P kS �
ln ai

xi
for all i 2 S. So, for all S � N,
ĉðSÞ ¼ kS þmax
i2S

� ln ai

xi

� �
: �
Eq. (2) defines a cost TU-game ðN ; ĉÞ. We remark that our model includes as a particular case the cost game
in González and Herrero (2004). Indeed, taking ai ¼ 1

e, for all i 2 N, we obtain exactly the same game as in
their paper. Moreover, we note again that ĉ is the sum of an additive game plus an airport game which, once
more, implies that ĉ is concave, its core can be fully described and its Shapley value provides a specially notice-
able core allocation. Following Littlechild and Owen (1973), the next corollary gives an explicit expression of
the Shapley value in this context.

Corollary 1. The Shapley value of the game ðN ; ĉÞ is given by
UpðiÞðĉÞ ¼
� ln apð1Þ

nxpð1Þ
þ 1

n� 1

� ln apð2Þ

xpð2Þ
� � ln apð1Þ

xpð1Þ

� �
þ � � � þ 1

n� iþ 1

� ln apðiÞ

xpðiÞ
� � ln apði�1Þ

xpði�1Þ

� �
þ kpðiÞ;
for all i 2 N, and where p is a permutation of N such that
�ln apð1Þ

xpð1Þ
6
�ln apð2Þ

xpð2Þ
6 � � � 6 �ln apðnÞ

xpðnÞ
:

The rest of the section shows some difficulties when extending the previous results to the case in which the
agents are concerned with expected times in the queue instead of in the system. Surprisingly enough, this slight
variation leads to a scenario in which sometimes it is better for the agents not to cooperate.

Consider the same situation as in González and Herrero (2004) but in such a way that now each agent i has
a maximum admissible value tq

i 2 ð0;þ1Þ for the expected time of his customers in the queue. In a stationary
M/M/1 system with parameters k and l, the average waiting time in the queue by a customer is given by
k
lðl� kÞ :
So, each i will choose a server with an expected service time li such that
tq
i l

2
i � tq

i liki � ki ¼ 0;
which implies that
li ¼
tq
i ki �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tq
ið Þ

2k2
i þ 4kit

q
i

q
2tq

i
¼ ki

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki

2

� �2

þ ki

tq
i

s
:

From the fact that li > ki for all i 2 N, it follows that only the positive square root is possible, and rewriting
the expression, the cost of maintaining a server i in this situation is
cqðiÞ ¼ ki

2
þ ki

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

kit
q
i

s
:

If coalition S � N forms,
cqðSÞ ¼ kS

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS

2

� �2

þ kS

tqS

s
¼ kS

2
þ kS

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

kStqS

s
;

where tqS ¼ mini2Sftq
i g.

The following example shows that in a situation like this, players may prefer not to cooperate.
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Example 1. Take N = {1,2} and k1 = k2 = 1, tq
1 ¼ 100, tq

2 ¼ 1. Then:

• cqðNÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffi
1þ 2

1

q
¼ 1þ

ffiffiffi
3
p

.

• cqð1Þ þ cqð2Þ ¼ 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1

2
Þ2 þ 1

100

q
þ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1

2
Þ2 þ 1

1

q
¼ 1þ

ffiffiffiffiffiffiffiffiffi
0:26
p

þ
ffiffiffiffiffiffiffiffiffi
1:25
p

.

Hence, cq(1) + cq(2) < cq(N).

So, in the case that the agents are concerned with the time their customers spend in the queue, instead of
with the time their customers spend in the system, maybe they will not have incentives to cooperate, at least
under the conditions considered up to now. Next proposition gives a sufficient condition that makes cooper-
ation to be a good option.

Proposition 2. A sufficient condition in order that
P

i2ScqðiÞP cqðSÞ for a coalition S � N is that
kit
q
i 6 kStqS ð3Þ
for all i 2 S.

The proof is immediate if the terms
P

i2S
ki
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ki t
q
i

q
and kS

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

kS tqS

q
are compared. Taking tq

1 ¼ 4 in the

example above, one checks that the condition in Proposition 2 is not necessary.

The interpretation of condition (3) is clear. It says that the common server has to be able to take on more
work than each one of the individual servers whilst maintaining expected sojourn time guarantees for the indi-
vidual agents. In particular, this is true when the values tq

i are homogeneous (notice that in Example 1 above tq
1

and tq
2 are strongly discrepant).

We finish this section with two remarks. The first has to do with the motivation of the two new models
treated here. The second is a technical comment.

Remark 1. The two new models treated in this section are very natural and can be applied in many different
scenarios, for instance in the cost sharing problem in the Spanish health system described in González and
Herrero (2004). In fact, it is quite sensible to specify, for some specially delicate pathologies, a maximum value
for the time in the system (with a high-probability) instead of a maximum value for the expected time in the
system. In this context, it is also reasonable to deal with times in the queue instead of times in the system,
because what we want to diminish are the waiting times for a surgical intervention instead of the time of the
surgery itself.
Remark 2. In this section we have considered queueing systems with an FCFS discipline. Actually, this
assumption is only necessary to obtain expression (2) for ĉ. The expressions for c and cq given in this section
are still valid if we simply assume that the system discipline satisfies the conservation law (see Kleinrock (1976)
for details on the conservation law).
3. Cooperation under preemptive priority

In this section we deal with the following question. Taking into account that the different players have dif-
ferent specifications for their populations, would it be helpful in order to diminish the cost of the common
server that a priority scheme in the queue discipline is adopted?

We assume that the agents in N have agreed to run a common server to attend their customers. However,
now we suppose that a priority scheme with n classes (one for each agent) has been established. In this section
we always deal with priority schemes allowing preemption. Each class i 2 N corresponds to agent i, so it gen-
erates an expected number of clients per time unit ki, and it has a maximum value ti for the expected waiting
time in the system. We will moreover allow the use of mixing priority schemes. A mixing priority scheme (or pri-

ority policy) consists of multiplexing a finite set of priority schemes in such a way that each of them will operate
during a desired percentage of time. The following theorem proves that in this context there always exists a pri-
ority policy whose associated cost is less than or equal to the cost of the FCFS system given in (1).
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Theorem 1. For any vector (t1, . . . , tn) of maximum expected waiting times in the system for the agents in N, there

exists a priority policy that ensures these waiting times with a cost less than or equal to the one given by the

approach in (1).

Proof. Let us denote by P(N) the set of permutations of the finite set N. Let r 2 P(N) be an ordering of the n
classes which establishes the priority scheme of the queue. Here r(i) represents the position which has been
assigned to the class i. The smaller the position index, the higher priority associated to the class. It is well-
known (see, for instance Gross and Harris (1998, p. 233)) that for any l > kN, the expected waiting time in
the system for each class i under the priority scheme r is
W iðr; lÞ ¼
l

l�
P

j:rðjÞ<rðiÞkj

	 

l�

P
j:rðjÞ6rðiÞkj

	 
 : ð4Þ
Notice that Wi(r,l) is a decreasing function of l. We denote by W(r,l) the vector whose coordinates are
given by (4) and by FðN ; lÞ the set
FðN ; lÞ ¼ conv W ðr; lÞ 2 Rn : r 2 PðNÞf g;

where conv stands for convex hull. We distinguish two cases.

Case 1: t 2FðN ; lÞ for some l > kN.
Theorem 2 in Coffman and Mitrani (1980) established that t = (t1, . . . , tn) is achievable by some pri-
ority policy using a common server with a service rate l if and only if ðt1; . . . ; tnÞ 2FðN ; lÞ. Then,
since t, k and l must satisfy the conservation law for queueing disciplines (see, e.g., Kleinrock (1976,
p. 114)) the following equation holds:
X
i2N

ki

kN
ti ¼

1

l� kN
: ð5Þ

Hence, the common service rate l can be obtained solving Eq. (5). Its value is

l ¼ kN þ
kNPn
i¼1kiti

: ð6Þ

Clearly,

l 6 kN þ
1

tN
; ð7Þ

so, in view of (1), the cost of the common server diminishes if a priority scheme is adopted under
which the required vector (t1, . . . , tn) is in FðN ; lÞ.S
Case 2: t 62 l>kN
FðN ; lÞ.

From Lemma 2 in Coffman and Mitrani (1980), it is derived that any vector of expected waiting
times in the system (t1, . . . , tn) with ti = tj for every i, j 2 N belongs to the interior of FðN ; lÞ for some
l. (Note that, in this case, l ¼ kN þ 1

tN .)

To prove the result, assume without loss of generality that t1 = tN. Let l(t) be the line segment with
extreme points t and t̂ ¼ ðt1; . . . ; t1Þ. The segment l(t) is included in the halfspace Hþ ¼

x 2 Rn :
P

i2N
ki
kN

xi P tN
n o

. Indeed, the hyperplane defining the halfspace H+ contains t̂ and its

normal vector k1

kN
; . . . ; kn

kN

	 

P 0. Thus, t̂ þ Rn

þ � Hþ. Now, since clearly lðtÞ � t̂ þ Rn
þ, the inclusion

l(t) � H+ follows.
The above construction proves that l(t) intersects

S
l>kN

FðN ; lÞ in a subsegment. All the points in
that intersection, with the exception of t̂, are attainable by priority policies with service rates smaller
than 1

tN þ kN , that corresponds to the policy attaining t̂. (Notice that the service rate decreases while
kWk increases along the ray fx 2 Rn

þ : x1 ¼ x2 ¼ � � � ¼ xn > 0g, see (4). An illustration can be found
in Fig. 2.)
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Hence, any service rate l* associated with a point
t� 2 lðtÞ n f̂tgð Þ \
[

l>kN

FðN ; lÞ;
satisfies the aspiration level given by t and with a service rate smaller than the one in (1), namely
1
tN þ kN . h
Now we illustrate the result above for the two-classes situation. Here, the extreme points of the set FðN ; lÞ
are given by
1

l� k1

;
l

ðl� k1Þðl� kN Þ

� �
;

l
ðl� k2Þðl� kN Þ

;
1

l� k2

� �
:

Of course, it must hold that l > kN = k1 + k2. Fig. 1 illustrates this result where k1 = k2 = 1.
According to Theorem 2 in Coffman and Mitrani (1980), any (t1, t2) which lies inside the region limited by

the curves corresponding to the orderings r and s is achievable using a certain priority policy, by a server with
common service rate
l ¼ k1 þ k2 þ
k1 þ k2

k1t1 þ k2t2

;

as it is derived from the conservation law (5).
Fig. 2 displays the case in which ðt1; t2Þ 62

S
l>kN

FðN ; lÞ. The cost associated with�t, according to Theorem 1,
is less than or equal to 1

tN þ kN .
From now on we consider problems where the expected waiting time vector in the system t = (ti)i2N is

achievable. (Notice that t being achievable implies that for any S � N then (ti)i2S is achievable as well.)
Let us denote by QS the set of queueing situations (N, {ki}i2N, {ti}i2N) such that N is finite and
ðtiÞi2N 2FðN ; lÞ with l ¼ kN þ kNP

i2N
kiti

. Then, the maintenance cost of a common server for any coalition
S � N is given by
�cðSÞ ¼ kS þ
kSP

i2Skiti
: ð8Þ
Notice that, as we have already remarked, �cðNÞ is smaller than or equal to the total cost in González and Her-
rero’s model.

The problem now is how to allocate �cðNÞ among the agents. In order to do it, we consider the cost TU-
game ðN ;�cÞ given by Eq. (8). Observe first that, for each S � N,
Fig. 1. Vectors of achievable expected waiting times in the system.
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�cðSÞ �
X
i2S

�cðfigÞ ¼ �cðSÞ �
X
i2S

ki þ
1

ti

� �
6 0:
In the class of queueing situations QS, an allocation rule f is a function which associates to each (N, {ki}i2N,
{ti}i2N) 2 QS a non-negative vector in RN , denoted by f(N, {ki}i2N, {ti}i2N), such that the sum of its compo-
nents equals �cðNÞ. We define the proportional allocation rule, denoted by up, as
up
i N ; fkigi2N ; ftigi2N

� �
¼ ki þ

kiP
j2Nkjtj

:

According to this rule, each agent i 2 N pays an additive part ki plus a splitting of kNP
j2N

kjtj
proportional to ki.

Notice that
ki þ
kiP

j2Nkjtj
¼ ki

kN
�cðNÞ:
So up can also be said to allocate to each agent a splitting of �cðNÞ proportional to ki.
An important property for an allocation rule f is that it provides core allocations. In this context this means

that, for every (N, {ki}i2N, {ti}i2N) 2 QS and every S � N,
X
i2S

fi N ; fkigi2N ; ftigi2N

� �
6 �cðSÞ;
or, in words, that the allocation of the total cost �cðNÞ is acceptable for every coalition S � N. The following
proposition shows that the proportional allocation rule in fact provides core allocations.

Proposition 3. up provides core allocations.

Proof. For each coalition S 5 ;, the difference
P

i2Su
p
i N ; fkigi2N ; ftigi2N

� �
� �cðSÞ is
X

i2S

kiP
j2Nkjtj

�
X
i2S

kiP
j2Skjtj

6 0: �
An obvious consequence of Proposition 3 is that each game �c associated with an element of QS is totally
balanced. The following example shows that �c needs not to be concave and also that the Shapley value of �c
may fall outside its core.

Example 2. Take N = {1,2,3}, k1 = k2 = k3 = 1, and t1 = 1, t2 = 47.29 and t3 = 53.71. After some algebra, it
is easy to check that (N, {ki}i2N, {ti}i2N) 2 QS. Then we have:
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• �cðf1gÞ ¼ 2, �cðf2gÞ ¼ 1:021, �cðf3gÞ ¼ 1:019,
• �cðf1; 2gÞ ¼ 2:041, �cðf1; 3gÞ ¼ 2:037, �cðf2; 3gÞ ¼ 2:02,
• �cðf1; 2; 3gÞ ¼ 3:029:

Consider S = {1} � T = {1, 2} and i = 3. Then
�cðS [ figÞ � �cðSÞ < �cðT [ figÞ � �cðT Þ;

so �c is not a concave game. Moreover, the Shapley value of this game is Uð�cÞ ¼ ð1:343; 0:845; 0:841Þ, which is
not a core allocation because U1ð�cÞ þ U2ð�cÞ ¼ 2:188 > �cðf1; 2gÞ ¼ 2:041.

In summary, up is a reasonable allocation rule that (a) can be easily computed and (b) provides core allo-
cations. So, this rule is our proposal for allocating the maintenance cost of the common server in this context.
We finish the paper providing an axiomatic characterization of this rule which shows that it has excellent
properties from the point of view of the immunity to possible manipulations.

To start with, let us introduce two appealing properties for an allocation rule f defined on QS.

P1. Non-advantageous reallocation

Let (N, {ki}i2N, {ti}i2N) 2 QS and ðN ; f~kigi2N ; f~tigi2N Þ 2 QS be such that
P

i2Nkiti ¼
P

i2N
~ki~ti and kN ¼ ~kN .

Then
X
i2T

fi N ; fkigi2N ; ftigi2N

� �
¼
X
i2T

fi N ; f~kigi2N ; f~tigi2N

	 

for any T � N with kT ¼ ~kT .
The meaning of this property is that a rule should be invariant to reallocations of the parameters ki within

any coalition T while keeping the total cost. This reallocation is one possible way in which a certain coalition
can manipulate its parameters to obtain some advantage. Another possible way is performing artificial merg-
ings or splittings. These manipulations are prevented by the next property. Before its introduction we need the
following definition.

Definition 1. Let (N, {ki}i2N, {ti}i2N) 2 QS be such that ti = t, for every i 2 N. Then for each S � N, the
S-manipulation of (N, {ki}i2N, {ti}i2N) is the queueing situation ðNS ; fkigi2NS ; ftigi2NS Þ 2 QS where

• NS = (NnS) [ {iS},
• kiS ¼

P
i2Ski, and

• tiS ¼ t.
Notice that, in these conditions, �cðNÞ ¼ �cðNSÞ for every S � N. Now we present the second property.

P2. Non-advantageous merging or splitting

Let (N, {ki}i2N, {ti}i2N) 2 QS be such that ti = t, for every i 2 N. Then, for each S � N,
fiS ðNS ; fkigi2NS ; ftigi2NS Þ ¼
X
i2S

fiðN ; fkigi2N ; ftigi2N Þ:
It is clear that the proportional allocation rule up satisfies P1 and P2. Moreover, the next theorem shows that
these two properties characterize the proportional allocation rule.

Theorem 2. The proportional allocation rule up is the unique allocation rule defined on QS which satisfies P1

and P2.

Proof. We have already mentioned that up satisfies P1 and P2. Let us check its uniqueness. Take an allocation
rule f defined on QS which satisfies P1 and P2. Consider (N, {ki}i2N, {ti}i2 N) 2 QS and fix arbitrarily j 2 N.
We have to prove that
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fj N ; fkigi2N ; ftigi2N

� �
¼ kj þ

kjP
i2Nkiti

:

We define for all i 2 N
~ti ¼
X
k2N

kk

kN
tk ¼ ~t;
observe that P1 implies that
fj N ; fkigi2N ; ftigi2N

� �
¼ fj N ; fkigi2N ; f~tigi2N

� �
; ð9Þ
(notice that P1 can be applied because
P

i2Nki~ti ¼
P

i2Nkiti).

Now take the S-manipulation of ðN ; fkigi2N ; f~tigi2N Þ for S = Nn{j}. We know that:
� �cðNSÞ ¼ �cðNÞ; ð10Þ
� �cðNSÞ ¼ fjðNS ; fkigi2NS ; f~tigi2NS Þ þ fiS ðNS ; fkigi2NS ; f~tigi2NS Þ; ð11Þ
� �cðNÞ ¼ fjðN ; fkigi2N ; f~tigi2N Þ þ

X
k 6¼j

fkðN ; fkigi2N ; f~tigi2N Þ: ð12Þ
Since (10)–(12) hold, and f satisfies P2, then
fjðN ; fkigi2N ; f~tigi2N Þ ¼ fjðNS ; fkigi2NS ; f~tigi2NS Þ:
Hence, it is clear that fjðN ; fkigi2N ; f~tigi2NÞ can be written as a function of kN, kj and ~tj (notice that ~tj ¼ ~t does
not really depend on j). So,
fjðN ; fkigi2N ; f~tigi2N Þ ¼ F ðkN ; kj;~tÞ:
Suppose that F is linear in its second variable (we will prove below that this is actually true). Then,
fjðN ; fkigi2N ; f~tigi2N Þ ¼ gðkN ;~tÞkj: ð13Þ
Thus
�cðNÞ ¼
X
j2N

fjðN ; fkigi2N ; f~tigi2N Þ ¼ gðkN ;~tÞkN ;
and so gðkN ;~tÞ ¼ �cðNÞ
kN

. Now, in view of (9) and (13), we get:
fjðN ; fkigi2N ; ftigi2N Þ ¼
�cðNÞ
kN

kj ¼ kj þ
kjP

i2Nkiti
:

So, to finish the proof we just need to check that F is linear in its second variable. Notice that we have a col-
lection of functions
fF ða; �; bÞja; b 2 ð0;þ1Þg:
such that F ða; �; bÞ : ð0; a� ! 0; aþ 1
b

h i
, for all a,b 2 (0, +1). Let us take now a, b, x, y 2 (0, +1) with

x + y 6 a. Then, there exists (N, {ki}i2N, {ti}i2N) 2 QS where ti = b for every i 2 N, k1 = x, and k2 = y. Define
the S-manipulation of this problem for S = {1,2}. Then, since f satisfies P2,
F ða; xþ y; bÞ ¼ fiS NS ; fkigi2NS ; ftigi2NS

� �
¼ f1 N ; fkigi2N ; ftigi2N

� �
þ f2 N ; fkigi2N ; ftigi2N

� �
¼ F ða; x; bÞ þ F ða; y; bÞ:
So, for every a, b 2 (0,+1), F(a, Æ,b) is additive. Since F(a, Æ,b) is also non-negative, it is clear that it is increas-

ing. It is an easy exercise to prove that every additive, increasing function h : ð0; a� ! 0; aþ 1
b

h i
is also linear.

This completes the proof. h



M.D. Garcı́a-Sanz et al. / European Journal of Operational Research 188 (2008) 485–495 495
Finally we check that these two properties are independent.

1. The rule f 1 which assigns to each queueing situation (N, {ki}i2N, {ti}i2N) 2 QS the vector whose jth coor-
dinate is given by
f 1
j N ; fkigi2N ; ftigi2N

� �
¼ �cðNÞ
jN j ;

where jNj is the number of agents in N, satisfies P1, but it does not satisfy P2.
2. The rule f 2 which assigns to each queueing situation (N, {ki}i2N, {ti}i2N) 2 QS the vector whose jth coor-

dinate is given by
f 2
j ðN ; fkigi2N ; ftigi2N Þ ¼

kjtjP
i2Nkiti

�cðNÞ

satisfies P2, but it does not satisfy P1.
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